The telephoto images beamed back to Earth show a scene of eroded knobs and gulches on a mountainside, with geological layering clearly exposed. The new views were taken by the 100-millimeter telephoto lens and the 34-milllimeter wide angle lens of the Mast Camera (Mastcam) instrument. Mastcam has photographed the lower slope of the nearby mountain called Mount Sharp.
"This is an area on Mount Sharp where Curiosity will go," said Mastcam principal investigator Michael Malin, of Malin Space Science Systems in San Diego. "Those layers are our ultimate objective. The dark dune field is between us and those layers. In front of the dark sand you see redder sand, with a different composition suggested by its different color. The rocks in the foreground show diversity -- some rounded, some angular, with different histories. This is a very rich geological site to look at and eventually to drive through."
The Following User Says Thank You to troutman For This Useful Post:
So I'm always a little confused when I see these color pics from Nasa...
Are these approximate colored? or genuine color photography?
The NASA website captions mention that the photos are usually color corrected to look more like Earth lighting to better analyse the terrain in a way we can easily understand.
First song to be broadcast from another planet. will.i.am used a 40 piece orchestra as he said he was trying to make the song timeless by not using computers.
First song with instruments anyways. These guys gave a live performance!
To a geologist, that string of four elements -- sodium, aluminum, silicon, potassium -- immediately makes one think "feldspar," and a particular flavor of feldspar (rich in alkali elements sodium and potassium) that I don't know if we've ever seen on Mars before. It's the commonest rock-forming mineral on Earth, the pink or opaque white or sometimes gray material in granite countertops. That, combined with the information that the rock is relatively low in magnesium, iron, nickel, and zinc, told every geologist listening to the call that Jake is a rock that formed from a rock melt that evolved, changed, from a straightforward melted Mars rock. (Or, that it was a melted rock made of material that had gone through some such process.) It's a rock that formed through processes that we know in Earth geologic environments, but not one we've ever seen on Mars.
The journalists on today's teleconference pushed Stolper hard for statements about what this rock says about Mars' history, about the environment that prevailed when Jake formed. His answers likely dissatisfied them; they were equivocal and noncommittal. But that was appropriate. The news today is that in investigating a common rock type (basalt) to cross-calibrate two instruments, they found an uncommon composition, something unique, something that requires a dynamic, evolving geologic environment of an as-yet-unknown nature, something that opens up a new space of possibilities for types of igneous geology that can be imagined for Mars' past.
Last edited by troutman; 10-16-2012 at 11:31 AM.
The Following 3 Users Say Thank You to troutman For This Useful Post:
Mars rover Curiosity collected its second scoop of Martian soil at a sandy patch called "Rocknest." and revealed this bright particle and similar ones elsewhere in the pit.